

General Purpose Bomb Fast Cook-Off Mitigation Techniques

Presented by:

Jen Duchow
BLU-110 Technical Lead

Brian Hays BLU-111,117 Technical Lead

10/13/2010

Contributing Author: Tony Walls

NAVNA

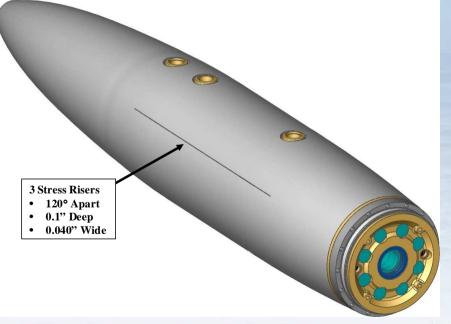
- Joint Air Force/Navy program
 - Mitigate response of GP bombs to FCO

Relative Likelihood Of Experiencing A Given IM Threat								
	FCO	SCO	BI	FI	SD			
Relative Likelihood of Experiencing IM Threats in a		1	3	3	7			
shipboard environment (1)	0		7))			

- Maintain current BLU-111, BLU-110, and BLU-117 penetration and fragmentation performance
- Maintain current mass properties
- Limit cost increase
- Little or no impact to logistics
- Minimal impact to bomb hardware

Design Considerations

- Structural
 - Penetration loading
- Compatible with existing tail kits, fuzes, pallets etc.
 - Quickstrike mines kit
- Variable area available for venting
 - Minimum area required for venting determined through testing
- Manufacturing
- De-mil procedures

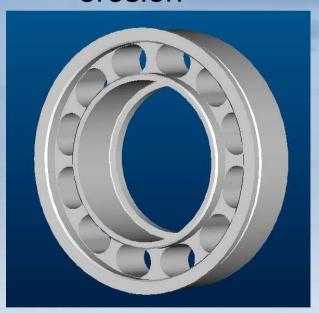


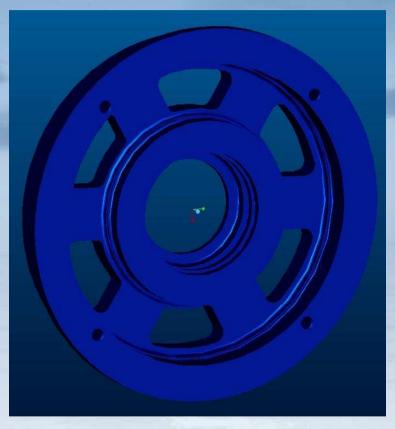
IM Mitigation Techniques

- Stress riser with pad of Cellogen
 - Sodium Carboxy Methylcellulose

- Used to enhance internal pressure in bomb

during SCO

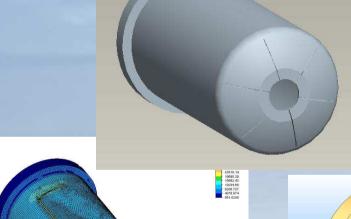




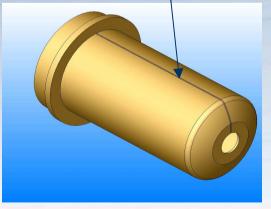
IM Mitigation Techniques

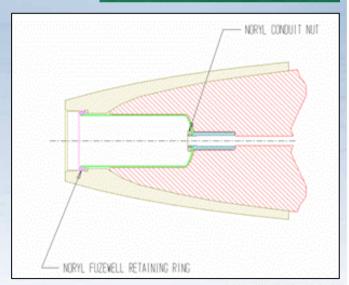
- Vented aluminum base plug
 - Increased vent area due to erosion

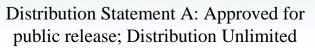
- Aluminum unable to meet penetration requirements
- Potential corrosion issues due to dissimilar metals



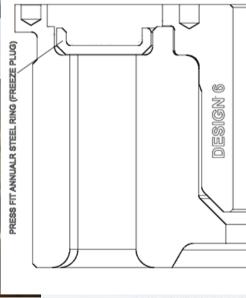
IM Mitigation Techniques

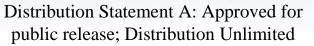

- Collapsible fuze liner
 - SCO mitigation only

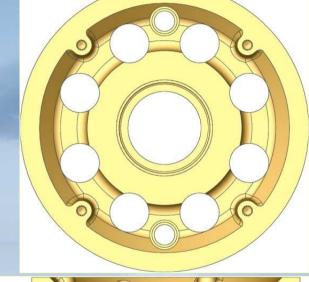

Thermally releasable fuze liner

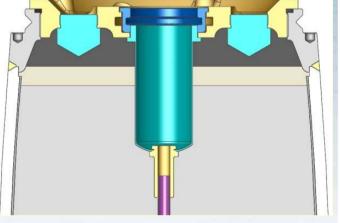


Channel Stress Riser


Base Plug Closure Techniques


- Tamper Resistance/
 Environmental Seal
 - ABS Dust cover
 - Press-fit annular plug
 - Thermally releasable vent cover
 - Driv-lok studs/Screws
 - Adhesive/Sealant




BLU-117 Preliminary Design

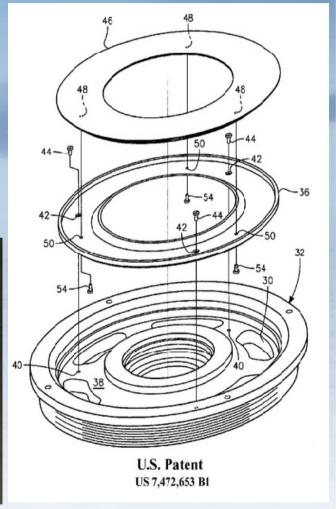
- Iterative design process using:
 - PBXN-109
 - Stress risers on bomb case
 - Stress risers on fuze liner
 - Individual vent plugs
 - MNX-794 melt case explosive

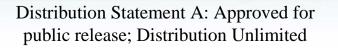
BLU-117 FCO Testing

- 2 FCO conducted with no vent covers to verify sufficient vent area
 - Both passed
- 4 FCO conducted with annular vent cover
 - All passed
- Vent areas determined from developmental testing, lessons learned, other weapon systems
- Port shape was driven by strength requirements

BLU-117 FCO Testing

Tested vent areas
 19-32 in²




BLU-117 Final Design

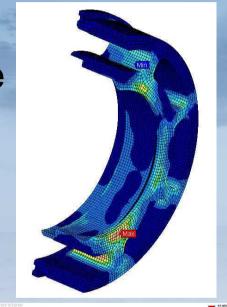
- 25 in² vent area
- AFX-795 (melt cast)

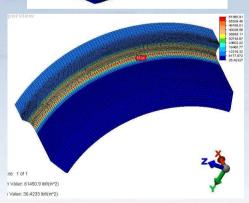
BLU-117 IM Qualification Test Results

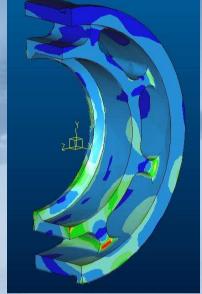
BLU-117 A/B (PBXN-109)

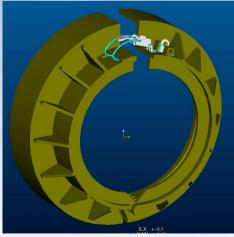
FCO	SCO	BI	FI	SR	SCJ
IV	IV	IV	V	(F)	(F)

BLU-117 C/B (AFX-795/Aft Venting)

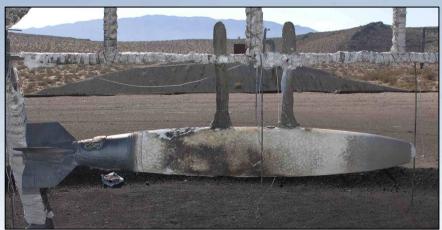

FCO	SCO	BI	FI	FI SR	
V	V	III	Ш	(F)	(F)






BLU-111 Unique Design Considerations

- External water pressure
- Quickstrike
- Torque Requirements
- Small cross sectional area to work with
 - Fuze liner retaining ring design
 - Shipping Cap



BLU-111 FCO Testing

- Tested vent areas 3-10 in²
- Design margin for FCO at 3 in²

BLU-111 Final Design

- 4 in² vent area
- PBXN-109

BLU-111 IM Qualification Test Results

BLU-111 A/B (PBXN-109)

FCO	SCO	BI	FI	SR	SCJ
IV	IV	V	V	(F)	(F)

BLU-111 C/B (PBXN-109/Aft Venting)

FCO	SCO	BI	FI	SR	SCJ
V	IV	\mathbf{V}	IV	(F)	I

BLU-110 Unique Design Considerations

- Streamlined design effort due to BLU-111 and BLU-117 data collected
- Watertight seal for Quickstrike compatibility
- High penetration loads
- Incorporate part commonality with BLU-111

BLU-110 FCO Testing

Tested vent areas
 10-25 in²

BLU-110 Final Design

- 10 in² vent area
- PBXN-109

BLU-110 IM Qualification Test Results

BLU-110 A/B (PBXN-109)

FCO	SCO	BI	FI	SR	SCJ
IV / V	V	IV	V	(F)	(F)

BLU-110 C/B (PBXN-109/Aft Venting)

FCO	SCO	BI	FI	SR	SCJ
V	III	IV	V	(F)	(F)

Summary

- All three bomb weight classes passed FCO with a Type V reaction
- Each weight class utilizes the same explosive in the AF and Navy versions
- Improved SCO in the 2000 lb version
- 500 lb and 2000 lb versions have been fully re-qualified and are starting production
- All bombs are compatible with existing fuzes, pallets, and guidance kits
- Mass property limits were maintained

Acknowledgements

- John Baronowski
- Fred Becker
- Sharon Berry
- Vicki Brady
- Mark Buffum
- Que Bui-dang
- Bland Burchett
- Don Burnett
- Terry Byrd
- Steve Capello
- Jimmy Countz
- Herb Gollmar
- Bob Gramm
- Lee Hardt
- Rich Hardy
- Terry Heaton

- Stephen Kelly
- Thomas Krawietz
- Bob Koontz
- Mike Martyn
- Carol Meade
- Kelly Minnick
- Brad Patello
- Gregg Schroeder
- Chuck Schneider
- Brad Weich
- John Yelverton
- Frank Zaborowski
- Test Management Office
 - Al Avery
 - Brennan Clark
 - Mandy Lazar

CURRENT IM STATUS OF GENERAL PURPOSE BOMBS

Incremental Improvements		SCO	BI	FI	SR	SCJ
MK 82 (500lb) Tritonal/H-6 MK 83 (1000lb) Tritonal/H-6		(F)	(F)	(F)	(F)	(F)
		(F)	(F)	(F)	(F)	(F)
Change in Explosive MK 84 (2000lb) Tritonal/H-	(F)	(F)	(F)	(F)	(F)	(F)
ZAPISSITS						
BLU-111A/B (500lb) PBXN-109	IV	IV/V	V	V	(F)	(F)
Late 1980's BLU-110A/B (1000lb) PBXN-109		V	IV	V	(F)	(F)
Change in BLU-117A/B (2000lb) PBXN-109	IV	IV	IV	V	(F)	(F)
Mechanical Design						
BLU-111 (PBXN-109/Nose & Aft Venting) V	IV	V	IV	(F)	1
+2005 BLU-110 (PBXN-109/Aft Venting)	V	Ш	IV	V	(F)	(F)
BLU-117 (AFX-795 + Aft Venting)	V	V	III	III	(F)	(F)

